

Contents

	Humiolib
	Vision

	Governance

	Installation

	Usage

	Reference
	HumioClient

	QueryJob

	WebCaller

	HumioExceptions

	Contributing
	Ways To Contribute

	Setting Up humiolib For Local Development

	Running Tests locally

	Building Documentation From Source

	Making A Pull Request

	Publishing the Library to PyPI

	Terms of Service For Contributors

	Authors
	Current Maintainer(s)

	Original Author and First Commit

	Contributors (alpha by username)

	Changelog
	0.2.0 (2020-03-30)

	0.2.2 (2020-05-19)

	0.2.3 (2021-08-13)

	0.2.4 (2022-08-15)

	0.2.5 (2023-04-17)

Indices and tables

	Index

	Module Index

	Search Page

Humiolib

[image: Documentation Status] [https://readthedocs.org/projects/python-humio] [image: PyPI Package latest release] [https://pypi.org/project/humiolib] [image: Apache 2.0 License] [https://opensource.org/licenses/Apache-2.0]

The humiolib library is a wrapper for Humio’s web API, supporting easy interaction with Humio directly from Python.
Full documentation for this repository can be found at https://python-humio.readthedocs.io/en/latest/readme.html.

Vision

The vision for humiolib is to create an opinionated wrapper around the Humio web API, supporting log ingestion and log queries.
The project does not simply expose web endpoints as Python methods, but attempts to improve upon the usability experience of the API.
In addition the project seeks to add non-intrusive quality of life features, so that users can focus on their primary goals during development.

Governance

This project is maintained by employees at Humio ApS.
As a general rule, only employees at Humio can become maintainers and have commit privileges to this repository.
Therefore, if you want to contribute to the project, which we very much encourage, you must first fork the repository.
Maintainers will have the final say on accepting or rejecting pull requests.
As a rule of thumb, pull requests will be accepted if:

	The contribution fits with the project’s vision

	All automated tests have passed

	The contribution is of a quality comparable to the rest of the project

The maintainers will attempt to react to issues and pull requests quickly, but their ability to do so can vary.
If you haven’t heard back from a maintainer within 7 days of creating an issue or making a pull request, please feel free to ping them on the relevant post.

The active maintainers involved with this project include:

	Alexander Brandborg [https://github.com/AlexanderBrandborg]

Installation

The humiolib library has been published on PyPI, so you can use pip to install it:

pip install humiolib

Usage

The examples below seek to get you going with humiolib.
For further documentation have a look at the code itself.

HumioClient

The HumioClient class is used for general interaction with Humio.
It is mainly used for performing queries, as well as managing different aspects of your Humio instance.

from humiolib.HumioClient import HumioClient

Creating the client
client = HumioClient(
 base_url= "https://cloud.humio.com",
 repository= "sandbox",
 user_token="*****")

Using a streaming query
webStream = client.streaming_query("Login Attempt Failed", is_live=True)
for event in webStream:
 print(event)

Using a queryjob
queryjob = client.create_queryjob("Login Attempt Failed", is_live=True)
poll_result = queryjob.poll()
for event in poll_result.events:
 print(event)

With a static queryjob you can poll it iterativly until it has been exhausted
queryjob = client.create_queryjob("Login Attempt Failed", is_live=False)
for poll_result in queryjob.poll_until_done():
 print(poll_result.metadata)
 for event in poll_result.events:
 print(event)

HumioIngestClient

The HumioIngestClient class is used for ingesting data into Humio.
While the HumioClient can also be used for ingesting data, this is mainly meant for debugging.

from humiolib.HumioClient import HumioIngestClient

Creating the client
client = HumioIngestClient(
 base_url= "https://cloud.humio.com",
 ingest_token="*****")

Ingesting Unstructured Data
messages = [
 "192.168.1.21 - user1 [02/Nov/2017:13:48:26 +0000] \"POST /humio/api/v1/ingest/elastic-bulk HTTP/1.1\" 200 0 \"-\" \"useragent\" 0.015 664 0.015",
 "192.168.1..21 - user2 [02/Nov/2017:13:49:09 +0000] \"POST /humio/api/v1/ingest/elastic-bulk HTTP/1.1\" 200 0 \"-\" \"useragent\" 0.013 565 0.013"
]

client.ingest_messages(messages)

Ingesting Structured Data
structured_data = [
 {
 "tags": {"host": "server1" },
 "events": [
 {
 "timestamp": "2020-03-23T00:00:00+00:00",
 "attributes": {"key1": "value1", "key2": "value2"}
 }
]
 }
]

client.ingest_json_data(structured_data)

Reference

	HumioClient

	QueryJob

	WebCaller

	HumioExceptions

HumioClient

	
class humiolib.HumioClient.BaseHumioClient(base_url)

	Base class for other client types, is not meant to be instantiated

	
class humiolib.HumioClient.HumioClient(repository, user_token, base_url='http://localhost:3000')

	A Humio client that gives full access to the underlying API.
While this client can be used for ingesting data,
we recommend using the HumioIngestClient made exclusivly for ingestion.

	
add_file_contents(file_name, file_headers, changed_rows, column_changes=[], offset=0, limit=200)

	Add contents to a file

	Parameters

	
	file_name (string) – Name of file

	file_headers (list) – Headers of the file

	changed_rows (list) – Rows within the offset and limit to overwrite existing rows

	column_changes (list, optional) – Column changes that will be applied to all rows in the file

	offset (int, optional) – Starting index to replace the old rows with the updated ones.

	limit (int, optional) – Used to determine when to stop replacing rows, by adding the limit to the offset

	Returns

	Response data to web request as json string

	Return type

	str

	
create_file(file_name)

	Create new file.

	Parameters

	file_name (string) – Name of file

	Returns

	Response data to web request as json string

	Return type

	str

	
create_queryjob(query_string, start=None, end=None, is_live=None, timezone_offset_minutes=None, arguments=None, raw_data=None, **kwargs)

	Creates a queryjob on Humio, which executes asynchronously of the calling code.
The returned QueryJob instance can be used to get the query results at a later time.
Queryjobs are good to use for live queries, or static queries that return smaller
amounts of data.

	Parameters

	
	query_string (str) – Humio query

	start (Union[int, str], optional) – Starting time of query

	end (Union[int, str], optional) – Ending time of query

	is_live (int, optional) – Ending time of query

	is_live – Timezone offset in minutes

	argument (dict(string->string), optional) – Arguments specified in query

	raw_data (dict(string->string), optional) – Additional arguments to add to POST body under other keys

	Returns

	An instance that grants access to the created queryjob and associated results

	Return type

	QueryJob

	
create_user(email, isRoot=False)

	Create user on Humio instance. Method is idempotent

	Parameters

	
	email (str) – Email of user to create

	isRoot (bool, optional) – Indicates whether user should be root

	Returns

	Response to web request as json string

	Return type

	str

	
delete_file(file_name)

	Delete an existing file.

	Parameters

	file_name (string) – Name of file

	Returns

	Response to web request as json string

	Return type

	str

	
delete_user_by_email(email)

	Delete user by email.

	Parameters

	email (string) – Email of user to delete.

	Returns

	Response to web request as json string

	Return type

	str

	
delete_user_by_id(user_id)

	Delete user from Humio instance.

	Parameters

	user_id (string) – Id of user to delete.

	Returns

	Response to web request as json string

	Return type

	str

	
get_file(file_name, encoding=None)

	Get specific file on repository

	Parameters

	file_name (string) – Name of file to get.

	Returns

	Response to web request as json string

	Return type

	str

	
get_file_content(filename, offset=0, limit=200, filter_string=None)

	Get the contents of a file

	Parameters

	
	file_name – Name of file.

	offset (int) – Starting index to replace the old rows with the updated ones.

	limit (int) – Used to find when to stop replacing rows, by adding the limit to the offset

	filter_string (string, optional) – Used to apply a filter string

	Returns

	Response to web request as json string

	Return type

	str

	
get_status(**kwargs)

	Gets status of Humio instance

	Returns

	Response to web request as json string

	Return type

	str

	
get_user_by_email(email)

	Get a user associated with Humio instance by email

	Parameters

	email (str) – Email of queried user

	Returns

	Response to web request as json string

	Return type

	str

	
get_users()

	Gets users registered to Humio instance

	Returns

	Response to web request as json string

	Return type

	str

	
ingest_json_data(json_elements=None, **kwargs)

	Ingest structured json data to repository.
Structure of ingested data is discussed in: https://docs.humio.com/reference/api/ingest/#structured-data

	Parameters

	
	messages (list(string), optional) – A list of event strings.

	parser (string, optional) – Name of parser to use on messages.

	fields (dict(string->string), optional) – Fields that should be added to events after parsing.

	tags (dict(string->string), optional) – Tags to associate with the messages.

	Returns

	Response to web request as json string

	Return type

	str

	
ingest_messages(messages=None, parser=None, fields=None, tags=None, **kwargs)

	Ingest unstructred messages to repository.
Structure of ingested data is discussed in: https://docs.humio.com/reference/api/ingest/#parser

	Parameters

	
	messages (list(string), optional) – A list of event strings.

	parser (string, optional) – Name of parser to use on messages.

	fields (dict(string->string), optional) – Fields that should be added to events after parsing.

	tags (dict(string->string), optional) – Tags to associate with the messages.

	Returns

	Response to web request as json string

	Return type

	str

	
list_files()

	List uploaded files on repository

	Returns

	Response to web request as json string

	Return type

	str

	
remove_file_contents(file_name, offset=0, limit=200)

	Remove contents of a file

	Parameters

	
	file_name (string) – Name of file

	offset (int, optional) – Starting index to replace the old rows with the updated ones.

	limit (int, optional) – Used to find when to stop replacing rows, by adding the limit to the offset

	Returns

	Response data to web request as json string

	Return type

	str

	
streaming_query(query_string, start=None, end=None, is_live=None, timezone_offset_minutes=None, arguments=None, raw_data=None, **kwargs)

	Humio Query type that opens up a streaming socket connection to Humio.
This is the preferred way to do static queries with large result sizes.
It can be used for live queries, but not that if data is not passed back from
Humio for a while, the connection will be lost, resulting in an error.

	Parameters

	
	query_string (str) – Humio query

	start (Union[int, str], optional) – Starting time of query

	end (Union[int, str], optional) – Ending time of query

	is_live (bool, optional) – Ending time of query

	timezone_offset_minutes (int, optional) – Timezone offset in minutes

	argument (dict(string->string), optional) – Arguments specified in query

	raw_data (dict(string->string), optional) – Additional arguments to add to POST body under other keys

	Returns

	A generator that returns query results as python objects

	Return type

	Generator

	
class humiolib.HumioClient.HumioIngestClient(ingest_token, base_url='http://localhost:3000')

	A Humio client that is used exclusivly for ingesting data

	
ingest_json_data(json_elements=None, **kwargs)

	Ingest structured json data to repository.
Structure of ingested data is discussed in: https://docs.humio.com/reference/api/ingest/#structured-data

	Parameters

	json_elements (str) – Structured data that can be parsed to a json string.

	Returns

	Response to web request as json string

	Return type

	str

	
ingest_messages(messages=None, parser=None, fields=None, tags=None, **kwargs)

	Ingest unstructred messages to repository.
Structure of ingested data is discussed in: https://docs.humio.com/reference/api/ingest/#parser

	Parameters

	
	messages (list(string), optional) – A list of event strings.

	parser (string, optional) – Name of parser to use on messages.

	fields (dict(string->string), optional) – Fields that should be added to events after parsing.

	tags (dict(string->string), optional) – Tags to associate with the messages.

	Returns

	Response to web request as json string

	Return type

	str

QueryJob

	
class humiolib.QueryJob.BaseQueryJob(query_id, base_url, repository, user_token)

	Base QueryJob class, not meant to be instantiated.
This class and its children manage access to queryjobs created on a Humio instance,
they are mainly used for extracting results from queryjobs.

	
poll(**kwargs)

	Polls the queryjob for the next segment of data, and handles edge cases for data polled

	Returns

	A data object that contains events of the polled segment and metadata about the poll

	Return type

	PollResult

	
class humiolib.QueryJob.LiveQueryJob(query_id, base_url, repository, user_token)

	Manages a live queryjob

	
class humiolib.QueryJob.PollResult(events, metadata)

	Result of polling segments of queryjob results.
We choose to return these clusters of data, rather than just a list of events,
as the metadata returned changes between polls.

	
class humiolib.QueryJob.StaticQueryJob(query_id, base_url, repository, user_token)

	Manages a static queryjob

	
poll(**kwargs)

	Polls next segment of result

	Returns

	A data object that contains events of the polled segment and metadata about the poll

	Return type

	PollResult

	
poll_until_done(**kwargs)

	Create generator for yielding poll results

	Returns

	A generator for query results

	Return type

	Generator

WebCaller

	
class humiolib.WebCaller.WebCaller(base_url)

	Object used for abstracting calls to the Humio API

	
call_graphql(headers=None, data=None, **kwargs)

	Call Humio’s GraphQL endpoint

	Parameters

	
	headers (dict, optional) – Http headers

	data (dict, optional) – Post request body for GraphQL

	Returns

	Response to web request

	Return type

	Response Object

	
call_rest(verb, endpoint, headers=None, data=None, files=None, stream=False, **kwargs)

	Call one of Humio’s REST endpoints

	Parameters

	
	verb (str) – Http verb

	endpoint (str) – Called Humio endpoint

	headers (dict, optional) – Http headers

	data (dict, optional) – Post request body

	files (dict, optional) – Files to be posted

	stream (bool, optional) – Indicates whether a stream request should be made

	Returns

	Response to web request

	Return type

	Response Object

	
static response_as_json(func)

	Wrapper to take the raw requests responses and turn them into json

	Parameters

	func (Function) – Function to be wrapped.

	Returns

	Result of function, parsed into python objects from json

	Return type

	dict

	
class humiolib.WebCaller.WebStreamer(connection)

	Wrapper for a web request stream.
Its main purpose is to catch errors during stream and raise them again as custom Humio exceptions.

HumioExceptions

	
exception humiolib.HumioExceptions.HumioConnectionDroppedException

	

	
exception humiolib.HumioExceptions.HumioConnectionException

	

	
exception humiolib.HumioExceptions.HumioException

	

	
exception humiolib.HumioExceptions.HumioHTTPException(message, status_code=None)

	

	
exception humiolib.HumioExceptions.HumioQueryJobExhaustedException

	

	
exception humiolib.HumioExceptions.HumioQueryJobExpiredException

	

	
exception humiolib.HumioExceptions.HumioTimeoutException

	

Contributing

Contributions are welcome, and they are greatly appreciated!
Every little bit helps, and credit will always be given.

Ways To Contribute

There are many different ways, in which you may contribute to this project, including:

	Opening issues by using the issue tracker [https://github.com/humio/python-humio/issues], using the correct issue template for your submission.

	Commenting and expanding on open issues.

	Propose fixes to open issues via a pull request.

We suggest that you create an issue on GitHub before starting to work on a pull request, as this gives us a better overview, and allows us to start a conversation about the issue.
We also encourage you to separate unrelated contributions into different pull requests. This makes it easier for us to understand your individual contributions and faster at reviewing them.

Setting Up humiolib For Local Development

	Fork python-humio [https://github.com/humio/python-humio]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com/humio/python-humio.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

	Install humiolib from your local repository:

pip install -e .

Now you can import humiolib into your Python code, and you can make changes to the project locally.

	As your work progresses, regularly commit to and push your branch to your own fork on GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

Running Tests locally

Testing is accomplished using the pytest [https://github.com/pytest-dev/pytest] library. This should automatically be installed on your machine, when you install the humiolib package.
To run tests simply execute the following command in the tests folder:

pytest

Humio API calls made during tests have been recorded using vcr.py [https://github.com/kevin1024/vcrpy] and can be found in the tests/cassettes folder.
These will be played back when tests are run, so you do not need to set up a Humio instance to perform the tests.
Please do not re-record cassettes unless you’re really familiar with vcr.py.

Building Documentation From Source

If you’re contributing to the documentation, you need to build the docs locally to inspect your changes.

To do this, first make sure you have the documentation dependencies installed:

pip install -r docs/requirements.txt

Once dependencies have been installed build the HTML pages using sphinx:

sphinx-build -b html docs build/docs

You should now find the generated HTML in build/docs.

Making A Pull Request

When you have made your changes locally, or you want feedback on a work in progress, you’re almost ready to make a pull request.

If you have changed part of the codebase in your pull request, please go through this checklist:

	Write new test cases if the old ones do not cover your new code.

	Update documentation if necessary.

	Add yourself to AUTHORS.rst.

If you have only changed the documentation you only need to add yourself to AUTHORS.rst.

When you’ve been through the applicable checklist, push your final changes to your development branch on GitHub.
Afterwards, use the GitHub interface to create a pull request to the official repository.

Publishing the Library to PyPI

This section describes the manual process of publishing this library to PyPI.
This is a task only done by maintainers of the repository, and it is always done from the master branch.

Before the package can be published, you need to bump the semantic version of the library. This is done using the program bump2version, which can be installed as such:

pip3 install bump2version

You can now bump the library to either a new patch, minor or major version, using the following command:

bumpversion (patch | minor | major)

This will bump the version across library as specified in .bumpversion.cfg.

Once the version has been bumped, add a descriptive entry to CHANGELOG.rst about what has changed in the new version of the library.

You will not need to change any more tracked files during the publishing process, so create a new commit to encompass the changes made by your version bump now.

To build the library into a package run:

python3 setup.py bdist_wheel sdist

This will create a build and source distribution of the library within the /dist folder.

To upload these files to PyPI you need to install twine, which can be done using the following command:

pip3 install twine

Now upload the contents of /dist to PyPI by entering the following command and following the prompt on the screen:

twine upload dist/*

Congratulations! The new version of the package should now be live on PyPI for all to enjoy.

Terms of Service For Contributors

For all contributions to this repository (software, bug fixes, configuration changes, documentation, or any other materials), we emphasize that this happens under GitHubs general Terms of Service and the license of this repository.

Contributing as an individual

If you are contributing as an individual you must make sure to adhere to:

The GitHub Terms of Service [https://help.github.com/en/github/site-policy/github-terms-of-service] Section D. User-Generated Content, Subsection: 6. Contributions Under Repository License [https://help.github.com/en/github/site-policy/github-terms-of-service#6-contributions-under-repository-license] :

Whenever you make a contribution to a repository containing notice of a license, you license your contribution under the same terms, and you agree that you have the right to license your contribution under those terms. If you have a separate agreement to license your contributions under different terms, such as a contributor license agreement, that agreement will supersede.
Isn’t this just how it works already? Yep. This is widely accepted as the norm in the open-source community; it’s commonly referred to by the shorthand “inbound=outbound”. We’re just making it explicit.”

Contributing on behalf of a Corporation

If you are contributing on behalf of a Corporation you must make sure to adhere to:

The GitHub Corporate Terms of Service [https://help.github.com/en/github/site-policy/github-corporate-terms-of-service] Section D. Content Responsibility; Ownership; License Rights, subsection 5. Contributions Under Repository License [https://help.github.com/en/github/site-policy/github-corporate-terms-of-service#5-contributions-under-repository-license]:

Whenever Customer makes a contribution to a repository containing notice of a license, it licenses such contributions under the same terms and agrees that it has the right to license such contributions under those terms. If Customer has a separate agreement to license its contributions under different terms, such as a contributor license agreement, that agreement will supersede

Authors

Current Maintainer(s)

	Alexander Brandborg, @alexanderbrandborg [https://github.com/AlexanderBrandborg]

Original Author and First Commit

	Sergey Grigorev, @xorsnn [https://github.com/xorsnn]

Contributors (alpha by username)

	Anders Fogh Eriksen @Fogh [https://github.com/Fogh]

	Hanne Moa @hmpf [https://github.com/hmpf]

	Kristian Gausel @KGausel [https://github.com/KGausel]

	Peter Mechlenborg @pmech [https://github.com/pmech]

	Sam @samgdf [https://github.com/samgdf]

	Chris Fraser @swefraser [https://github.com/swefraser]

	Vishal Kuo @vishalkuo [https://github.com/vishalkuo]

Changelog

0.2.0 (2020-03-30)

Initial real release to PyPI

Added:

	Tests, mocking out API calls with vcr.py

	Custom error handling to completly wrap url library used

	QueryJob class

Changed:

	Whole API interface has been updated

	Updated Sphinx documentation

Removed:

	A few configuration files left over from earlier versions

0.2.2 (2020-05-19)

Bugfixing to ensure that static queryjobs can be polled for all their results

Added:

	Static queryjobs can now be queried for more than one segment

Changed:

	Upon polling from a QueryJob it will now stall until it can poll data from Humio, ensuring that an empty result is not returned prematurely.

Removed:

	The poll_until_done method has been removed from live query jobs, as this does not make conceptual sense to do, in the same manner as a static query job.

0.2.3 (2021-08-13)

Smaller bugfixes
Changed:

	Fix urls in docstrings in HumioClient.py

	Propagate kwargs to poll functions in QueryJob.py

0.2.4 (2022-08-15)

Smaller file related bugfixes
Changed:

	upload_file function no longer attempts a cast to json

	list_files function now works on newer versions of humio

0.2.5 (2023-04-17)

Expand file functionality
Changed:

	Added additional endpoints for manipulating files via GraphQL

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 humiolib	

 	
 	
 humiolib.HumioClient	

 	
 	
 humiolib.HumioExceptions	

 	
 	
 humiolib.QueryJob	

 	
 	
 humiolib.WebCaller	

Index

 A
 | B
 | C
 | D
 | G
 | H
 | I
 | L
 | P
 | R
 | S
 | W

A

 	
 	add_file_contents() (humiolib.HumioClient.HumioClient method)

B

 	
 	BaseHumioClient (class in humiolib.HumioClient)

 	
 	BaseQueryJob (class in humiolib.QueryJob)

C

 	
 	call_graphql() (humiolib.WebCaller.WebCaller method)

 	call_rest() (humiolib.WebCaller.WebCaller method)

 	
 	create_file() (humiolib.HumioClient.HumioClient method)

 	create_queryjob() (humiolib.HumioClient.HumioClient method)

 	create_user() (humiolib.HumioClient.HumioClient method)

D

 	
 	delete_file() (humiolib.HumioClient.HumioClient method)

 	
 	delete_user_by_email() (humiolib.HumioClient.HumioClient method)

 	delete_user_by_id() (humiolib.HumioClient.HumioClient method)

G

 	
 	get_file() (humiolib.HumioClient.HumioClient method)

 	get_file_content() (humiolib.HumioClient.HumioClient method)

 	
 	get_status() (humiolib.HumioClient.HumioClient method)

 	get_user_by_email() (humiolib.HumioClient.HumioClient method)

 	get_users() (humiolib.HumioClient.HumioClient method)

H

 	
 	HumioClient (class in humiolib.HumioClient)

 	HumioConnectionDroppedException

 	HumioConnectionException

 	HumioException

 	HumioHTTPException

 	HumioIngestClient (class in humiolib.HumioClient)

 	
 	humiolib.HumioClient (module)

 	humiolib.HumioExceptions (module)

 	humiolib.QueryJob (module)

 	humiolib.WebCaller (module)

 	HumioQueryJobExhaustedException

 	HumioQueryJobExpiredException

 	HumioTimeoutException

I

 	
 	ingest_json_data() (humiolib.HumioClient.HumioClient method)

 	(humiolib.HumioClient.HumioIngestClient method)

 	
 	ingest_messages() (humiolib.HumioClient.HumioClient method)

 	(humiolib.HumioClient.HumioIngestClient method)

L

 	
 	list_files() (humiolib.HumioClient.HumioClient method)

 	
 	LiveQueryJob (class in humiolib.QueryJob)

P

 	
 	poll() (humiolib.QueryJob.BaseQueryJob method)

 	(humiolib.QueryJob.StaticQueryJob method)

 	
 	poll_until_done() (humiolib.QueryJob.StaticQueryJob method)

 	PollResult (class in humiolib.QueryJob)

R

 	
 	remove_file_contents() (humiolib.HumioClient.HumioClient method)

 	
 	response_as_json() (humiolib.WebCaller.WebCaller static method)

S

 	
 	StaticQueryJob (class in humiolib.QueryJob)

 	
 	streaming_query() (humiolib.HumioClient.HumioClient method)

W

 	
 	WebCaller (class in humiolib.WebCaller)

 	
 	WebStreamer (class in humiolib.WebCaller)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Humiolib

 		
 Vision

 		
 Governance

 		
 Installation

 		
 Usage

 		
 HumioClient

 		
 HumioIngestClient

 		
 Reference

 		
 HumioClient

 		
 QueryJob

 		
 WebCaller

 		
 HumioExceptions

 		
 Contributing

 		
 Ways To Contribute

 		
 Setting Up humiolib For Local Development

 		
 Running Tests locally

 		
 Building Documentation From Source

 		
 Making A Pull Request

 		
 Publishing the Library to PyPI

 		
 Terms of Service For Contributors

 		
 Contributing as an individual

 		
 Contributing on behalf of a Corporation

 		
 Authors

 		
 Current Maintainer(s)

 		
 Original Author and First Commit

 		
 Contributors (alpha by username)

 		
 Changelog

 		
 0.2.0 (2020-03-30)

 		
 0.2.2 (2020-05-19)

 		
 0.2.3 (2021-08-13)

 		
 0.2.4 (2022-08-15)

 		
 0.2.5 (2023-04-17)

_static/up.png

_static/up-pressed.png

